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ABSTRACT

VERY HIGH-SPEED ARITHMETIC PROCESSORS

Our VHSAP ARO study has lead to a number of accomplishments including
an original VLSI processor and a system with a high residue number system (RNS)
content called thel Gauss Machine. The Gauss machine is a SIMD systolic array

“architecture which takes advantage of the Galois-enhanced quadratic residue number
system (GEQRNS) to form reduced complexity arithmetic element.s. The Gauss
machine is targeted at front—eﬁd signal and image processing applications. With a
2 x 2 array of GEQRNS multiplier-accumulators operating at 10 MHz, the Gauss
machine can achieve a peak equivalent throughput of 320 million operations per
second when performing complex arithmetic. The Gauss machine is designed for a
broader, more general class of problems than other RNS based systems which have
been constructed: the Gauss machine may be used to accelerate computations which
involve or may be expressed as matrix-matrix (level 3), matrix-vector (level 2), or
vector-vector {level 1) operations. This paper describes the implementation of the

Causs machine and how it may be used to accelerate signal processing operations.
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Chapter 1

BASIS OF RESIDUE NUMBER SYSTEM

1.1 The Chinese Remainder Theorem

There are two large penalties in performing arithmetic in the two’s complement sys-
tem: the carry must propagate across the entire word for addition operations, and
the siée of the multiplier grows as the square of the width of the word. The Chinese
‘Remainder Theorem (CRT) [1, 2] suggests a means of eliminating the carry propa-
gation problem and of producing a multiplier that grows linearly with the width of

the word. The CRT is presented below.

Theorem 1 (The Chinese Remainder Theorem) Let M = [, p;, where for
i,7 € {1,2,3,...,L}, ged(pi,p;) = 1 for alli # j, and each p; € Z*. Then there
ezists an isomorphism ¢: L & Zp, X Zp, X Lipy X+ - X &y, described by the following.

Let m; = M/p;, and mpm7' =1 (mod p;) for all i € {1,2,3,...,L}. If
X € Zyp, let ¢(X) = (21,22,23,...,21) where z; = X (mod p;) for all 7 €
{1,2,3,...,L} then X = gb‘l(ml,a:g,wa,..-.,w;,) is described by the following con-
gruence

L
X= {Zm, < milay >p,} (mod M)

i=1

where < o >, indicates the unary  (mod p) operation.

The CRT forms the basis lor the RNS. In the RNS, two’s complement integers

are converted to their L-tuple residue representation by the ring isomorphism ¢ :



Zpg o= Ly, X Ly x Zpy x «+++ x 2y, described by the CRT. The numbers which are
in their L-tuple representation may be added and multiplied component-wise and
reconstructed via the CRT to form the correct result in Zys. For example, consider
the RNS system described by p1 = 3, p» = 5, and p; = 7. Then M = pip.ps = 105.

Let a = 7, and 6 = 9 where a,b € Zp. The numbers ¢ and b may be mapped to

their RNS 3-tuple representation via the mapping ¢:

(;5((!.) = (< T >3, <7 >5,<7 >7) = (1,2,0)

(b)) = (<9 >3,<9>5,<9>7) =(0,4,2).

Arithmetic m‘ay be performed on the RNS L-tuple representationof a,b € Zps
given by the mapping ¢. Let ¢(a) = (a1,a2,a3,...,a1), and ¢(b) = (b1, b2, b3, ..., bL).
Then '

#lacd)=(<a0b >p,<a0b; >p,, < az0by >p,...,<apoby >,,),
where o € {+, —, x}. Consider the 3-tuple representations of « and b:

(1,2,0) + (0,4,2) = (K 1+ 0>5,< 24+ 4>5,<0+2>7) = (1,1,2) . (L.1)

(1,2,0) x (0,4,2) = (<1-0>3,<2:4>5,<0-2>;)=(0,3,0).  (1.2)

For comparison, the mapping of ¢ + b = 16 and ab = 63 to their RNS 3-tuple

representation:

dla +b) = (<16 >3, <16 >5,< 16 >7) =(1,1,2) (1.3)

$lab) = (< 63 >3,< 63 >5,< 63 >7) =(0,3,0) (1.4)

The operations performed on the RNS representations of ¢ and & (equations

1.1,1.2) give the same results as the RNS representation of « + b and ab (equations



1.3, 1.4) performed in Zy. Now consider the restoration of the representation of
a+ bab € Zp from the RNS representations. For (py,p2,p3) = (3,5,7) ‘we have
my = 35, mi! =2, mg =21, m7! =1, ma = 15, and m3! = 1. From above we have

dla+b) = (1,1,2), and ¢(ab) = (0,3,0).

3
$71(1,1,2) = {Zm,- < mitay >p,} (mod 105)

i=1

= {35<2-1>3421 <1:1>s+15<1-2>7} (mod 105) =16

3
¢71(0,3,0) = {me < mylay >p..} (mod 105)

i=1

{35<2-0>3+21<1-3>;+15<1-0>7} (mod 105) =63

-

Thus we see fhat the results produced by the maﬁping ¢~ ! are as expected.
Generally, the moduli are chosen to be small enough that the adders and multipliers
may be implemented in a reasonably small memory-bésed lookup table. In a VLSI
implementation we might leverage advanced memory technology and thereby achieve

greater speed and smaller die area.

1.2 Complex Residue Number System (CRNS)

The RNS may be used to perform computations with complex numbers by using RNS
arithmetic elements to emulate the operations which would be performed using two’s
complement hardware. The use of RNS arithmetic to perform complex operations is
called complex RNS or CRNS. Suppose we have Gaussian integers ¢ + jb,c + jd €
Z{71/(7241), and 9 denotes the isomorphism between the Gaussian integers and the
CRNS: o: Zafjl/ (% +1) & Zpy X Zpy X Zpy X oo X 2y, XLy X Zipy X Zipyy %0+ X D,
Then

(e +3b)+ (c+jd) = (a+e)+i(b+d)



= P~ {p(a) + (b))} + F () + ¥(d)}
(@a+70) x{c+jd) = (ac—bd)+j(ad+ bc)
= ¥ (a)p(c) — P(B)p(d)} + j {9 (a)¥(d) + H(b)(c)}-

While the complex addition takes only two additions, the complex multipli-
cation takes four multiplications and two additions: the CRNS requires the same

number of additions and multiplications as the Gaussian integers.

1.3 Quadratic Residue Number System (QRNS)

The QRNS {3, 4] is-a variation upon the RNS which allows complex additions to
be performed with two RNS a,ddition.s and complex multiplications to be performed
with two RNS multiplications. This enhancement is accomplished by encoding the
real and imaginary components into two independent components. Given a prime p
of the form p = 4k + 1 where k € Z then the congruence z* = —1 (mod p) has two
solutions in the ring Z, that are multiplicative and additive inverses of one another.

Let 7 and 7-! denote the two solutions to the above congruence. Define a mapping

0: Z,[51/(5° +1) = Zp X Z, by

fla+30) = (z,27)

(a+30) (mod p)

b4

*

z (@a—7b) {mod p).

i

Furthermore, the inverse mapping 0-1: Z, x Z, — Z,[7]/(5% + 1) is given by
07z, 2" ) =< 27 s+ 27) >, +) <27 (2 = 27) >y

Suppose (z,27), (w,w*) € Z, x Z,. Then the addition and multiplication



operations in the ring < Z, x Z,, +,- > are given by

(z,2") + (w,w") = (z4+w,z"+w")

(z,2")(w,w") = (zw,z"w").

For example, consider a QRNS system with moduli py = 5 and p; = 13. Let
the Gaussian integersu,v € Z[j]/(72+1) be given as u =5+;3,and v = 4+73. In Zs

we have 7; = 2and 77! = 3. It can be seen that 2 and 3 are additive and multiplicative -

inverses of each other in Zs and also satisfy the congruence z? = -1 (mod 5). In
Z13 we have j, = 5 and‘}‘{l =8, Also, 21 = (mod 5), and 2= =7 (mod 13).

Therefore the QRNS representations of u and v are given‘ by

0u) = (zu2) |
7o = (<B+n3>5< 571-3'23 >13) = (1,7)
2 = (<5 -=713>5,<5—73>13) =(4,3)
o) = (%)
2o = (<4473 >5,<4+ 723 >13) = (0,6)

2t = (<4-13>5<4— 723 >13) =(3,2).

The arithmetic operations in the QRNS are performed in the same manner as in the

RNS. For example:

0{u) +0(v) = (2u+ 20,25+ 27) = (Zugos 204)
Zury = (K14+0>5,<7+6>13)=(1,0)
Zapy = (K4+3>5<34+2>1) =(2,5)
O(u)0(v) = (2uz,2;77) = (Fuwr 23)

Ty = (<1025, <70 >13) =(0,3)

"~



zh, = (<4-3>5,<3-2>)=(2,6).

uy

~ For comparison, note that wv = 114527 and u+v = 9+76. The QRNS representations

of uv and u + v are given as

O(utv) = (2440 Zaps)
Zhy, = (é 9+ 716 >5,< 9+ 726 >13) = (1,0)
2, = (9=716>5,<9— 526 >13) = (2,5)
ouv) = (2on2l)
2 = (<114 5127 >5,< 11 4 7,27 >13) = (0,3)
zy, = (< 1i — 127 >5,< 11 = 5527 >13) = (2,6).

The above results for the QRNS representations §(uv) and 6(u +v) agree with
6(u)d(v) and f(u) + 8(v) computed in the QRNS representation. The isomorphism ¢
is generally implemented by a combination of arithmetic elements and table lookup.
Since the z and z* channels are independent we are able to easily construct parallel
hardware to perform operations on both channels at the same time without any
communication between the channels. This parallelism allows us to easily i)erform
a complex addition or multiplication in one cycle. While parallel hardware would
allow us to perform a CRNS addition in one cycle, the multiplication in the CRNS
requires two additions and four multiplications. Using the same amount of hardware
as a QRNS multiplier-accumulator, a CRNS multiplier-accumulator would take twice

as many cycles to complete a single multiply-accumulate operalion.
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1.4 Galois Enhanced QRNS (GEQRNS)

The QRNS requires us to implement a multiplier which takes N bit inputs and pro-
duces an N bit output. The multiplier could be implemented using either a direct
implementation with modular correction or a lookup table. The primary disadvan-
tage of this is that despite the small size of the RNS adder, the multiplier is still
large. We may take advantage of the properties of Galois fields [5] to simplify the
implementation of an RNS multiplier.

For any prime modulus p there exists some o € Z, that generates all non-
zero elements of the field GF(p). That is to say {a* | ¢ = 0,1,2,...,p -2} =
GF(p) \ 0. Thus, we may uniquely represent all non-zero elements of Z, by their
exponents. These number theoretic logarithms may be added modulo p—1 to produce
multiplication: a<#*#>r-1 =< o'a? >,. Note that since zero is not an element c'>f
GF(p)\ 0 the zero must be handled as an exception. Practically, this means that the
inputs must be checked before the number theoretic logarithmn to determine whether
either one is a zero, and if one of the inputs is a zero, then the output of the multiplier
should be set to zero. .

For example, suppose that p = 7. Then o = 3 generates GF(7)\ 0: {3 |
i=0,1,2,3,4,5} = {1,3,2,6,4,5}. Suppos;& we wish to multiply 2 and 3. First we -

would take the number theoretic logarithm of 2 and 3 to the base a = 3:

log;(2) =2+=3*=2 (mod 7)
log,(3)=1<=3"=3 (mod7).
In order to mulliply 2 and 3 we now add the number theoretic logarithms modulo

p—1L:

2.3 =< 3.3 5= 3 s P 5= 6.



The architecture of a GEQRNS multiplier is illustrated in Figure 1.1 without
the zero detection and handling indicated. The multiplier requires two duplicate
N-entry memories to perform the number theoretic logarithm, and an N + 1-entry
table to perform the modulo p — 1 correction and number theoretic expt;nentiation.
Note that while the modulo p — 1 correction and number theoretic exponentiation
represent two separate steps, they may be integrated into a single table. Typically,
the multiplicands will be converted to the GEQRNS number theoretic logarithm form

by the conversion engine which computes the residues of the integer inputs.

é|:7 b
[Togy] [Log)]

v
<ab>,

Figure 1.1: Block Diagram of a GEQRNS Multiplier

1.5 L-CRT

The L-CRT [1, 2] offers an alternative to the CRT which has the advantage of in-
tegrating scaling into the CRT and avoiding the need for a modulo M adder. The
L-CRT is computed by factoring M inlo a rcal scale lactor V and an integer M’ = 2%,

where £ € Z%, such that M = VM', and 0 < M’ < M. Additionally, as for the
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CRT, m; = M/p:. The L-CRT is given as

L

Xs = {Z]_m; <mita; >, /VJ} (mod M"),

i=1
where |o] denotes the least integer or floor function. Since M’ = 2% where k € Z*
we may compute the sum Xg using regular k~bit two’s complement adders. The
|mi < mile; >p, /V] term for any fixed set of moduli is dependent only upon z;
and thus may be generated using a small, fast memory based table lookup. The
disadvantage of the L-CRT is that it may introduce an error into the computed Xg.
The error in the L-CRT is given by 0 < |X/V — Xs| < L. For front-end signal
processing a.pplicatic;ns this error is not critical since L « M. A block diagram of
two L-CRT engines is shown in IMigure 1.2.

The L-CRT has the advantage of avoiding the modulo M adder required to im-
plement the ‘true’ CRT and provides a means of scaling without additional hardware.
For VLSI and discrete implementations this advantage is particularly important since
division, like multiplication, are space-time intensive and cannot be performed in the

RNS since it is division-free.
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Figure 1.2: Block Diagram of L-CRT (a) and QRNS Augmented L CRT (b)
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Part 11

InvestiGATOR Array Processor Backplane



Chapter 2

INTRODUCTION

2.1 Motivation

There exists a need for an environment appropriate to the task of developing ex-
perimental array processors. This need is indicated by the large I/O requirements
and physical size of taxperirnental array processors. Traditional environments such as
personal computers or larger systems such as the VME bus are not appropriate as
they lack adequate space and 1/Q capabilities. Thus the motivation is established for
the development of a testbed for experimental array processors.

Additional capabilities are desirable. In particular, beyond the need to solve
physical form factor problems and I/O bandwidth bottlenecks, there is an additional
desire that the system should be host independent. The ideal host interface for
achieving host independence is the SCSI interface. The SCSI interface exists on
all common personal computers and workstations. There also exist a number of
peripherals which may take advantage of the SCSI interface, thus allowing the testbed

to utilize a number of mass storage and data acquisition products.

2.2 Design Parameters

Given the motivation presented in the previous section, the design parameters are
described as follows. The control of Lthe array processor and the SCSI interface require

substantial machine intelligence. Thus the selection of a microprocessor is required.
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The Motorola 68030 was sclected since it is capable of sustaining block data moves
of approximately forty megabytes per second (at 20 MHz), and because of previous
design experience with the 68000 family. First generation SCSI controller chips such
as the NCR 8350 require substantial processor intervention in order to operate: each
byte transferred causes an interrupt to occur. Additionally, these first generation
SCSI controller chips were only capable of asynchronous operation at data rates of
approximately 1.6 megabytes per second while many hosts operate synchronously at
a maximum data rate of five megabytes per second. A second generation device was
selected, the Western Digital 33C93A. The WD33C93A (second sourced by Advanced
Micro Devices and sometimes referred to as the Am33C93A) executes SCSI commands
independently of thc; host processor and is capable of transmitting large quantities

of data without host intervention. For purposes of debugging, the array processor

testbed also features RS-232C serial communications.

Memory requirements for the testbed are modest. The testbed need only
buffer data transactions between the host and array and perform some translation
of commands from the host to the array. Thus it was determined that the testbed
processor would only require one megabyte of high speed RAM and 128 kilobytes
of ROM. Since the processor typically is moving large, contiguous blocks of data
between the SCSI processor and the array processor, a memory architecture which
performs well in block operations is desirable. A dynamic RAM variant called static-
column RAM (SCRAM) is particularly well suited to this task. The SCRAM is
fundamentally a standard DRAM, however, once the row address has been latched
into the device, the device operates as a static RAM for all subsequent accesses
to that row of memory. These accesses may occur until refresh is required. The

advantage to this means ol memory operation are that a 70 ns device offers 35 ns



access times during static column operation. The static column mode of operation
is.synergistic with the 68030’s burst mode of operation. Using the burst mode of
operation the 68030 may read four longwords with reduced penalty. In particular, in
the burst mode of operation, the worst-case first word read time is two clock cycles (at
20 MHz, Toyete = 50ns). Subsequent accesses in non-burst mode still execute in two
clock cycles. Subsequent burst-mode accesses execute in one clock cycle. Thus, the
maximum memory bandwidlth without burst access is forty megabytes per second,
while the maximum memory bandwidth with burst access is sixty-four megabytes per

second.



Chapter 3

IMPLEMENTATION

This chapter describes the implementation of the InvestiGATOR array pro-
cessor testbed. The description is broken into modules reflecting the various major
components of the backplane: the CPU, the memories, the /O components, the

array interface, and remaining miscellaneous material.

3.1 Architecture

The InvestiGATOR backplane and SCSI control processor is constructed from sev-
eral discrete blocks. These blocks may be divided into four groups. The first, the
CPU is based upon the Motorola MCG68030. The second, the memory, consists of
one megabyte of high performance static-column RAM, and 128 kilobytes of low
performance EPROM. The third group is the I/O module which includes a high per-
formance SCSI port, dual RS-232C serial ports, and an I/O expansion port. The
fourth group is the array bus and interface. A block diagram of the InvestiGATOR
is shown in Figure 3.1.

The SCSI port is a single-ended, eight-bit implementation supporting syn-
chronous transfers up to five megabytes per second. The SCSI port has a local
thirty-two kilobyte buffer which allows the central processor to operate without in-
terference while transfers are underway. SCSI packets may be transferred either to or
from the InvestiGATOR with as few as two interrupis of the central processor. This

autonomous operation allows the CPU to dedicale a large percentage of its processing
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5.0 MB/s — Slot L
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Figure 3.1: Block Diagram of the InvestiGATOR Array Processor Testbed

budget to servicing the attached experimental array processor.

The serial port supports two RS-232C channels with programmable baud rates
of up to 9600 bps. The serial port is intended to act primarily as a debugging tool.
The 1/0 expansion port has a full thirty-two bit data bus, twenty-bit address bus, and
interrupt capabilities. This bus may be used to attach data acquisition, additional
I/O capabilities, or memory.

The RAM block is based upon static-column RAM supporting synchronous
and burst-mode accesses. This memory offers very high performance in block trans-

fers.

3.2 CPU Module

This section describes the generation of the various signals which are used in the
CPU module to service the MCG68030, and signals which are used to interface with
external devices and busses. This section relers to schematics which are found in

Appendix A. A block diagram ol the CPU module with its major subsystems is
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shown in Figure 3.2.

IOxDT ARYST
ROMDT RAMST
SIODT
SCsiDT
4
Bus Cycle
Termination
DSACKx STERM
SCSIRQ
SIOIRA_» Interrupt | iPLx MC68030 BERR |Bus Fault
ARRAvIRG | Control - A Logic
A
.| Address
. Decoding

Y v vy l

Control, Data, Address  ROM, KO, RAM, Arra
Buses Address Space Signals

Figure 3.2: Block Diagram of CPU Module

3.2.1 Cache Control

The MC68030 provides a mechanism whereby external circuitry may indicate to the
68030 which addresses are cachable, the cache inhibit input, CIIN*. CIIN* is gener-
ated by PALO and inhibits the cache when accessing the I/O and array addressing
spaces. Additionally, the 68030 provides a means for disabling the cache from ex-
ternal hardware, primarily for debugging purposes. This is the cache disable input,
CDIS*. CDIS* may be asserted or negated using switch S3.

The primary reason for the selection of the MC68030 as the control proces-
sor of the InvestiGATOR was its on-chip instruction/data cache and burst cache

fill mechanism. The 68030 provides a means of bursting four longwords of instruc-



tions or data into the cache. This is accomplished using the MC68030’s cache burst
request/acknowledge (CBREQ*/CBACK*) handshaking protocol. When the 68030
runs a bus cycle in which it can execute a burst fill of the cache it asserts the CBREQ*
signal. If the addressed device wishes to proceed with a burst fill of the cache it must
acknowledge the burst request with CBACK*. In a zero wait state system the 68030
can read four longwords in eight cycles (i.e., forty megabytes per second) using stan-
dard bus cycles while the same four longwords can be read in five clock cycles (i.e.,
sixty-four megabytes per second) using burst mode. There is support for burst ﬁiling
of the cache from the RAM module only (see Table 3.2). A burst acknowledge on the
part of the RAM module is passed through a D flip-flop clocked 180 degrees out of

phase with the 20 MHz system clock in order to stretch the CBACK* signal.

3.2.2 Interrupt Control

The MC68030 provides a seven level prioritized interrupt mechanism using the IPLO-
2* signals. PALI provides priority encoding of the various interrupt signals generated
in the InvestiGATOR. The majority of the signals are provided to I/O devices, how-
ever, there is also an interrupt line reserved for the array bus. The prioritization of

the interrupt sources is given below:

LRequest Priority I Description I
NMI (Non-Maskable Interrupt). Reserved.
SCSI Port.

Reserved.

SIO port.

Reserved.

[/O Bus.

Array Bus.

Ll I AN ) B o ) e B N |

Table 3.1: Interrupt Priority Levels
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The InvestiGATOR uses the MC68030’s interrupt autovector mechanism to
vector interrupts. This is accomplished by asserting the AVEC* input of the 68030
when an interrupt acknow.ledge cycle is executed. AVEC* is generated by PALQ using
a clocked output. AVEC* is asserted when PALQ detects an interrupt acknowledge
cycle. The 63030 also provides one additional signal related to interrupts, the [IPEND*
(interrupt pending signal). The IPEND* signal is not used by the InvestiGATOR.

3.2.3 Address Space Decoding

Address space decociing is provided by PALO. PALO decodes four primary address
spaces: RAM space, ROM space, I/O space, and array space. These address space
signals are address strobe qualified. This address space arrangement consumes sixty-
four megabytes of the four gigabyte available address space, however, the sixty-four
megabyte space is repeated (i.e., A26-A31 are ignored). Accesses to memory spaces
besides program and data space are ignorved (with the exception of interrupt acknowl-
edge cycles which run in CPU space) and will result in a bus fault after a timeout.

Address space decoding is summarized in Table 3.2.

l ] Address Range | Description I
C |} Oh—1FFFFh ROM space.
20000h—FFFFIh 1/0 space.

B,C | 100000h—FFFFFFh RAM space.
1000000h—3FFFFFFh | Array space.
C=cachable, B=burst cycle support.

Table 3.2: Address Space Decoding
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3.2.4 Bus Cycle Termination

The 68030 provides two mechanisms for normal termination of bus cycles: asyn-
chronous termination and synchronous termination. Both means of termination are
supported by the InvestiGATOR. The synchronous termination mechanism is a high
speed termination mechanism for use with thirty-two bit data ports only. In practice,
only the RAM space and array space use synchronous termination. The MC68030’s
synchronous termination input, STERM* is generated by taking the logical OR of
the two possible sources of synchronous termination requests, and then using a D flip-
flop clocked 180 degrees out of phase with the 20 MHz system clock to stretch the
STERM* signal, see Figure 3.3

RAMST*
MC68030
J Q
ARYST*
K oy () STERM
N
CLK20 ? S oLk

Figure 3.3: STERM Signal Input and Conditioning

The asynchronoﬂs'bus cycle termination mechanism allows for dynamic bus
sizing for eight, sixteen, and thirty-two bit ports. The asynchronous termination
signals, DSACKOQ* and DSACK1*, are provided by PAL1A which generates the ap-

propriate DSACXKs for various ports (primarily 1/0).

3.2.5 Abnormal Bus Cycle Termination: Bus Error Control

It is possible to attempt to access addresses for which there is no corresponding

device. In this event it is necessary for external civenibry Lo terminale the bus cycle.
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Additionally, it may be desirable to terminate an I/O or array bus cycle with an error
condition. Bus cycles may be terminated with a fault condition by assertion of the
MC68030’s BERR™ signal. Assertion of the BERR* signal is controlled by the BERR
control state machine, located on MACH2. This state machine tracks bus cycles and
asserts BERR* when the I/O or array busses request, or in the event of a timeout,
indicated by the trickle count output of an eight bit watchdog timer (counter). A

state machine diagram is given in Figure B.1.

3.2.6 Byte Select Signals

The CPU module provides byte select signals (UU*, UM*, LM*, and LL*) to external
modules by decoding the A0, Al, SIZ0, and SIZ1 outputs of the 68030. These byte
selects are decoded by PALIA and are not qualified by the address strobe.

3.2.7 Miscellaneous Signals

The InvestiGATOR does not support multiple bus mastering in the controller so the
BR* (bus request) input is negated. The BG* (bus grant) signal is ignored and
the BGACK* (bus grant acknowledge) signal is negated. The MC68030’s memory
management unit may be disabled using the MMUDIS* input to the 68030. Access

to this signal is provided using switch S4.

3.3 Memory Module

This section describes the operation of the RAM and ROM modules. The RAM ar-
chitecture is based upon a single thirty-two bit wide bank of 70 ns static column RAM
(SCRAM) with a capacity of one megabyte. The SCRAM coutroller is based upon

a high density PLD, the AMD Mach 110, with high resolution timing generated by



the AMD Am2971A programmable event generator (PEG). The ROM architecture
is based upon a single eight-bit wide bank of EPROM with a capacity of 128 kilo-
bytes. The ROM is only intended for SCSI control processor diagnostic and operating
code. Time critical code sections are moved from the ROM to the main memory, the
SCRAM. Microcode and data may be loaded from the host after boot. In situations
where the InvestiGATOR is being used as a standalone data collection unit microcode

might be loaded from a non-volatile semiconductor disk resident on the I/0O bus.

3.3.1 Static Column RAM

-

The InvestiGATOR contains a one megabyte bank of SCRAM. The SCRAM is used
as an alternative to standard DRAM because of its high speed access properties:
sequential accesses to the same column proceed substantially faster than an access to
the same speed rated standard DRAM. The SCRAM achieves no-wait-state operation
when operating in static column mode. This is an attractive property when coupled
with the 68030’s burst mode and when one considers that the primary use for this
bank of RAM will be to perform SCSI block transfers.

There are penalties to pay for the high performance of the SCRAM: SCRAM is
fifty per cent to one-hundred per cent more expensive than standard DRAM, SCRAM
requires significantly more control logic than standard DRAM, and in the event of a
non-static column mode access, there is a substantial penalty to pay in cycling a new
row address. However, given the design constraints, the static column architecture is
the best solution.

The SCRAM architecture is composed ol several components. There is the
SCRAM itsell, data transceivers, address multiplexer, address comparator, burst

counter, refresh timer, high-time resolution sequencer, and byte sclect decoder. A
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block diagram of the SCRAM architecture is shown in Figure 3.4.

AS «—» SCRAM

RAMST

GBAEG Controller

CBACK 1

RAMSP

Row Address Event
Comparator Generator
Address — Address
MUX SCRAM
Bata

Figure 3.4: Block Diagram of SCRAM Architecture

The burst counter serves to cycle the two lowest order bits of the address
during burst accesses. Forlexa.mple, if an access is a miss in the 68030’s internal
cache, caching is allowed, and the target of the access supports burst mode accesses
then in order to keep latency (from the execution unit’s point of view) minimal the
required word is read. Then the next longword address, modulo four, is read, and
so on until four longwords have been read. The burst counter is integrated onto the
PLD which contains the controller state machine.

The address comparator serves to allow the controller to determine whether
an access is a static column hit. The address comparator contains both a register
and a comparator so that the previous row address can be stored for comparison with
future accesses. Note that refresh cycles do not invalidate the vegister contents of the
address comparator. Validity of the contents of the address comparator is controlled
by the state of the RAS signal: the coutents (and thus the output) of the address
comparator are valid if and only il RAS is asserted.

The refresh counter is a simple eight bit counter whose irickle-count output



sets a refresh request to the controller state machine. The refresh counter issues a
refresh request 256 cycles (7’=50 ns) after it is reset for a net of one request every
12.8 ms resulting in each of the 512 rows of RAM being refreshed every 6.6 ms,
meeting the required 8 ms refresh cycle period.

The controller issues commands to the sequencer to perform operations on the
RAM. The sequencer is an AMD Am2971A programmable event generator (PEG)
which is capable of generatiﬂg sequences of signals with 10 ns timing resolution. Some
of the signals are routed directly to their targets while others are routed through a
PLD which provides byte select coding, primarily for write operations. Additionally
the controller handlés all handshaking with the CPU. The state machine must handle

a number of conditions:

Refresh cycle

Static column miss, read without burst

Static column miss, read with burst

Static column hit, read without burst

Static column hit, read with burst

Static column miss, write

Static column hit, write

Examining the controller state machine diagram (see Figure B.3) we see that
the state machine implements the read sequences using a variety of shared state
sequences. By sharing state sequences we arrive at a much more efficient implemen-

tation of the controller stalte machine.

s
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The following refers to Figure 3.5. The static column RAM device is dependent
upon four control signals: chip select (CS), row address strobe (RAS), write strobe
(WR), and output enable (OE). RAS, WR, and OE are generated by the PEG and
fed directly to the SCRAM devices while the CS signal is generated by the PEG it is
subject to byte select coding by PAL4 using the byte select signals (UU, UM, LM, LL}
generated by the CPU module. The data lines are buffered using four Am29C861A
CMOS bus transceivers under the control of the SCRAM controller state machine.
The address lines are multiplexed by a pair of Am29C827A bus drivers acting as a

row/column address multiplexer under control of the controller via the PEG.

Pata Transceiver Control

CBREQ"

Controller
State
Machine

Refresh Counter Control

Address Comparator Control

WE* »
CE*

Sequencer LOE* >

————»
UCE" )

RAMSP*

RAMCBACK® &
RAMST"

CPU Interface

¥ INC,LATCH

Address Counter

A?!k
»

Memory Confrol Signals

1: Address Bank Decoder :
2: Byte Select Conditioned Chip Selec

Figure 3.5: SCRAM Controller Architecture

The relresh counter operales in a free counting mode, driven by the 20 MHz
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system clock. Two-hundred fifty-six clock cycles (12.8 ms) alfter a counter reset
the trickle-count output (RCO) is asserted for one clock cycle which in turn sets the
refresh request SR flip-flop in the controller state machine PLD. After the completion
of the current memory transaction the controller resets the counter and the refresh
request SR flip-flop via the CLRREF signal and orders the PEG to execute a hidden
refresh cycle. Under worse case conditions a refresh request could suffer a response
latency of up to twelve clocklcycles (600 ns). Thus, under these worse case conditions
a hidden refresh cycle might be executed every 13.4 ms implying a refresh of every

row of the SCRAM every 6.9 ms, still within the required 8.0 ms.

The controlle;' handshakes with the CPU module via the AS, CBREQ, RAMSP,
Read/Write, CBACK, and STERM signals. The R/W, AS and RAMSP signals are
used in conjunction with additional address decoding provided by PAL4 (via the
BANKSEL signal from PAL4) to initiate memory transactions. The CBREQ/CBACK

handshaking pair is used to control burst cycles.

The controller orders the PEG to execute sequences using the PA2-0 and
TRIGx outputs. The PA2-0 signals provide an address to the PEG to determine
the starting point in its memory for execution while the TRIGJ/TRIGK outputs are
fed through a negative- edge triggered flip-flop to generate a trigger signal which will
arrive at a time when the PEG address inputs (PA2-0) are guaranteed valid and cause
the PEG to begin execution with minimal latency. The chip select signals generated
by the PEG are géted using the byte selects generated by the CPU module with
controller override via the CSALL signal. The PEG also generates the RAS, WR,
and OE signals used by the SCRAM. Additionally, the PEG controls the address
multiplexer via the AREG signals which control the output enables of the address

drivers.



The address comparator is a combination register/comparator. The controller
causes the comparator to latch a new row address using the CLKEN signal. When
the address comparator determines that the row address at its input matches that
stored in its internal register it signals the controller using the HSA signal. Finally,

the data transceivers are controlled by the OER and OET controller signals.

The burst address counter is integrated into the controller PLD. This counter
is a simple two-bit counter with load and increment controls from the controller state
machine, load inputs AIl,0, and AQ1,0. Negation of the load or latch and increment
controls implies a hold state. The outputs of this counter are fed through the address
multiplexer to the SCRAM array. Note that since the least significant bits of the
column address are fed through the burst address counter, the presentation of a new
column address to the SCRAM array is limited by both the address multiplexer and
the speed with which the address counter can latch a new address and present it to

the address multiplexer.

The SCRAM must be verified each time the power is applied. There are
standard algorithmic test methods which facilitate functional testing of the DRAM
and detection of common faults [6]. The standard test methods discussed in [6] are
targeted primarily at functional testing of DRAMs in VLSI testers, not testing of
the memory in circuit. These methods may be adapted with the addition of tests
to exercise the surrounding architecture. In particular, during testing of the first
InvestiGATOR board, a stuck-at fault (SAF) was discovered in one of the address
multiplexer buffers. A test to find SATs in the address multiplexer buflers is given
in Figure 3.6. Once the address multiplexers are verified the data transceivers should
be verified. Note that malfunctioning data transccivers could potentially mask or

simulate an address multiplexer SAF, thus, special precaution should be taken in
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the implementation of the address multiplexer SAF detection so as not to cause an
erroneous conclusion as to the status of the address multiplexers.

for i=0 to n-1

M{0]:=

M[2"i]:=1

if M[0]!=0 then there exists an SAQ fault @ bit i

M[C] :=1

M[2-i]:=0

if M[2~i]!'=1 then there exists an SA1 fault @ bit i
end '

Figure 3.6: Pseudo-Code for Address Multiplexer SA Fault Detection

-

Once the status of the surrounding architecture is verified, [6] suggests that
tests for unlinked SAFs, unlinked transition faults (TFs), unlinked coupling faults
(CFs), linked CFs, linked CFs and TFs, address decoder faults {AFs), and various
pattern sensitive faults (PSFs) be conducted. It turns out that two tests will provide
fault coverage for SAFs, TFs, AFs, linked CFs, linked TFs, unlinked idempotent, and
unlinked inversion CFs: the March C and March B algorithms.

Each march element of a march sequence consists of an arrow pointing up or
down, indicating the direction of march in address space, and a sequence of read and
write operations, For example, f} indicates an address sequence from zero to n — 1,
while || indicates an address sequence from n — 1 to zero. The March C algorithm is
given in Figure 3.7. The March B algorithm is given in Figure 3.8. Both the March C
and March B algorithms assume that an initial f{w0) march is executed to initialize
the memory before the test algorithm is executed.

The most common PSFs which occur are neighborhood pattern sensitive faults
(NPSFs). NPST's are faults where the writing of memory cells adjacent to a base cell

will cause an unwanted transition in the base cell. The cells most likely to effect a
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{ fr(e,wl); (e, w0); f1(r); Y(r,wl); $(r,w0); U(r); }

Figure 3.7: March C Algorithm for Memory Testing

{ ﬂ(l‘,Wl,I',WO,I',Wl); ﬂ(l‘,WO,W].); U(I‘,WO,WI,WO); U(I‘,WI,WO); }

Figure 3.8: March B Algorithm for Memory Testing

base cell — and thus expose an NPSF - are the four cells adjacent to the base cell
in the north, south, east, and west directions. A basic NPSF detection algorithm,
suggested by [6] is given in Figure 3.9.

write all base cells with zero;

for each base cell

apply a pattern;

read base cell and compare against expected value (zero);
end;
wri%e all base cells with one;

for each base cell
apply a pattern;

read base cell and compare against expected value (one);
end;

Figure 3.9: A Basic NPSI' Detection Algorithm

3.3.2 ROM Controller and Architecture

The InvestiGATOR contains a single bank of 128K x 8-bit wide (128 kilobytes)
EPROM. This ROM is a low performance memory which contains basic firmware
for the InvestiGATOR and may contain some firmware for the array under test.
ROM read cycles are executed in three clock cycles yielding a net bandwidth of

6.67 megabytes per second. Code segments demanding higher performance may be
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shadowed to the RAM space.

3.4 1/0 Bus and Devices

The InvestiGATOR supports an I/O bus through which it communicates with the out-
side world. Currently the 1/O bus contains a SCSI controller, and a serial (RS-232C)
port. The SCSI controller qtilizes the Western Digital 33C93A SCSI bus controller
chip and contains a thirty-two kilobyte data buffer. The serial I/O controller uses the
AMD Z85C30 ESCC (Enhanced Serial Communications Controller) to provide two
channels of RS-232 1/0. Allowances are made for the addition of peripherals to the In-
vestiGATOR’s [/O bus. Some of the allowances include a wired-OR interrupt request
line and three data transfer acknowledge lines: one for each size data port supported
by the MC68030. The accessibility of the I/0O bus is intended to compensate for the

potential unavailability or unsuitability of a SCSI bus equivalent peripheral.

3.4.1 SCSI

The SCSI port is built around the Western Digital 33C93A SBIC (SCSI Bus Interface
Chip). The SCSI port is designed to use a form of I/O called DBA (direct buffer
access ) for data block transfers. Using DBA, the SBIC performs block transfers
directly to and from a thirty-two kilobyte local buffer memory without processor
intervention. This allows the SBIC to achieve its rated five megabyte/second data
transfer rates and allows the control processor to avoid the performance penalties
associated with interrupt servicing overhead. A block diagram of the SCSI port
architecture is depicted in Figure 3.10.

The SBIC operates in two modes during normal operation in the InvestiGA-

TOR: direct addressing mode and DBA mode. I the direct addressing mode the
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Figure 3.10: Block Diagram of the SCSI Port

processor performs transactions with the SBIC by using hardware assisted time mul-
tiplexing of the addr’ess and data to the SBIC address/data port. Direct addressing
mode contrasts with indirect addressing mode where the processor first would write
an address to the SBIC and then the next SBIC access would be performed on the
register whose address was written in the previous cycle. Indirect addressing mode
carries obvious penalties since two real accesses are required for every data transac-
tion. The SBIC normally is kept in a DBA stand-by mode: that is, whenever the
processor is not accessing the SBIC or RAM buffer the SBIC is in DBA mode. When
the processor attempts to perform a transaction with the SBIC or RAM the SBIC is
switched out of DBA mode so that the transaction may proceed.

In DBA mode the SBIC has control of the RAM buffer. Reads and writes
are accomplished using the SBIC read enable and write enable signals. Since the
SBIC has no means of handshaking with external logic when performing individual
transactions with the buffer RAM, it is up to the control architecture to ensure
that the transaction meets the SBIC’s timing requirements. Additionally, the SBIC
provides no direct control of the address counter; rather, the control of the counter is

imnplicit. After cach bufler read or wrile operation, the counter must be ineremented
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by the external hardware. The control logic determines when to increment the counter
by observing the read and write strobes. Address counter control in DBA mode is
performed by observing the RE and WE strobes which are controlled by the SBIC in
this mode.

The SCSI-2 specification gives a list of commands which a processor on the
SCSI bus can implement. Some of the commands listed are optional while others are
mandatory under the SCSI-2 specification. A table of these commands and whether

the InvestiGATOR responds to the commands is given in Table 3.3.

I I Command Name ] Notes

O | Change Description Not Implemented.

O | Compare Not Implemented.

O | Copy Not Implemented.

O | Copy and Verify Not Implemented.

M | Inquiry '

O | Log Select

O | Log Sense

O | Read Buifer Used to read program memory and control
store.

O | Receive Used to transmit command and data packets
to InvestiGATOR.

O | Receive Diagnostic Results | Used to retrieve diagnostic results.

M | Request Sense

M | Send Used to receive command and data packets
from InvestiGATOR.

M | Send Diagnostic Used to request diagnostics to be performed.

M | Test Unit Ready

O | Write Buffer Used to load program memory and control
store.

O=optional, M=mandatory, according to SC51-2 definition.

"able 3.3: SCSI1-2 Command Set
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3.4.2 SIO

The serial I/0 interface is provided for soft ware development and diagnostic purposes.
The serial controller is based upon an AMD Z85C30 Enhanced Serial Communications
Controller (ESCC). The ESCC-1/O bus interface is composed simply of an eight-bit
buffer and a PAL-based controller.
| The ESCC supports two channels of serial communications and independent
baud rate generation. Two channels of serial I/O are supported by the InvestiGATOR
since the additional cost is minimal. In the case of the InvestiGATOR the baud rate
is generated by dividing down the 10 MHz system clock to the appropriate baud rate.
The baud rate is prz)grammed by providing a time constant for each channel. The
time constants appropriate to some common baud rates assuming forx=10 MHz,

and a clock multiplier of sixteen are provided in Table 3.4.

rDesired Baud | Time Constant | Actual Baud | Per Cent Difference
300 1044 299.904 -0.032
1200 262 1201.92 0.159
2400 132 2403.85 0.158
4800 67 4807.69 0.155
9600 35 9469.70 -1.296
19200 18 19531.3 1.510

Table 3.4: Time Constants versus Baud Rates for Enhanced Serial Communication

Controller

The ESCC’s registers are mapped in [/O space as described in Table 3.5.

The serial ports are brought out to DB9 connectors on the back of the In-
vestiGATOR. The signals are translated via the RS-232C level compatible MC1448
transmitter and MC1449 receiver. This transmitler/receiver pair was chosen for its

robustness. The pinout of the InvestiGATOR s serial ports is non-standard and de-



| Address I Description l
20800h | Channel B Control Register.
20801h | Channel B Data Register.
20802h | Channel A Control Register.
20803h | Channel A Data Register.

Table 3.5: Enhanced Serial Communication Controller Register Memory Map

picted below in Figure 3.11.

Figure 3.11: InvestiGATOR Serial Port Pinout

A cable suitable for connecting the InvestiGATOR to an IBM PS/2 host
was constructed according to the diagram in Figure 3.12. The cable is suitable for
XON/XOFF flow-control protocol and is not suitable for hardwire (i.e., REQ/ACK
or RTS/CTS) protocols. Note that the InvestiGATOR end of the cable does not
have the usual data set ready (DSR) and ring indicator (RI) inputs. Furthermore,
the InvestiGATOR does not offer a protective ground (PGND) input. The protective
ground wire from the terminal side of the cable should be connected and provide

grounding for the cable shielding. However, the signal ground (SGND) is connected.

3.5 1/0O Expansion

The 1/0 expansion connector is intended to allow unforescen problems to be ad-

dressed. The I/0O expansion connector is mapped Lo the to [/0Q address space and
P 1’ ]
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Figure 3.12: InvestiGATOR to IBM PS/2 Serial Cable

-

may be used with eight, sixteen, and thirty-two bit data bus sizes. Wired-OR lines
are provided for asynchronous bus cycle termination and interrupts. The port is fully
buffered and the address lines and control lines are always turned on, thus allowing
the I/O expansion connector to be used to probe system activity. A list of signal

names, pin numbers, and description of the signals’ functions are given in Table 3.6.

| Pin Number ’ Signal Name | Description |

0—31 D31-0 Data bus.
32—51 A19-0 Address bus.
52 AS* Address strobe.
53 DS Data strobe.
54 [OSP* I/O address space flag.
55 IOSDTACK* | Eight bit port DTACK.
56 IO16DTACK™* | Sixteen bit port DTACK.
57 I032DTACK* | Thirty-two bit port DTACK.
58 [OIRQ* [/O expansion port IRQ line.

Table 3.6: 1/OQ Expausion Connector Signals



3.6 Array Bus

The array bus is a connection rich environment. Previous experience and analysis
has led to the conclusion that interboard connectivity was lacking in traditional host
environments such as the PC-XT, PC-AT, EISA, MicroChannel, VME, and others.

The InvestiGATOR has a 324 signal connector. Seventy-five of the signals
on this bus are allocated for a memory mapped interface to the MC863030 SCSI
control processor. These signals are fixed in terms of arrangement and function. The
remaining signals are broken up between near-neighbor connections and broadcast
connections which are functionally undedicated « priori. One-hundred forty of these
signals are wired a,s‘ near-neighbor connections where seventy of the signals go to
the right adjacent slot and the remaining seventy go to the left adjacent slot. The
remaining one-hundred nine signals are wired as a broadcast bus to the array. All

of the near-neighbor connections are array broadcast connections are invisible to the

MC68030 CPU. A breakdown of the allocation of these signals is listed in Table 3.7.

3.6.1 CPU to Array Bus Interface and Architecture

The CPU is interfaced to the array bus via a memory mapped interface using a total
of seventy-five signal lines on the backplane connector. The interface to the array
bus buffers the CPU signals and passes all signals necessary for data and instruction
transactions to take place. A breakdown of the allocation of these signals is listed in
Table 3.7.

This interface does not support alternate address spaces via the 68030’s func-
tion code (FCx) outputs, dynamic bus sizing (é.e., all ports are thirty-two bits), nor
does it support burst mode accesses. Each slot has its own STERM signal which is

.1

routed to the CPU by the interface. STERM validity is ascertained by observation
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of the SLOTENx signals. Each slot has a wired-OR SLOTEN (active-low) signal
which is held high if a card is not present in a slot. If a card is present and needs
to be able to assert STERM then it must assert the SLOTENx signal by wiring the
signal directly to ground. The STERMx and SLOTENX signals are unique at each

connector and are lidden from the other slots.

The array bus error {ARYBERR) and interrupt request (ARYIRQ) signals
are wired-OR. ARYBERR causes a BERR cycle to be executed by the 68030, while
ARYIRQ requests a level one priority 68030 IRQ.

3.6.2 Local (Near-Neighbor) Connections

The local slot connections consist of seventy signal lines to each adjacent slot. While
these connections are not predefined, they are adequate to implement a sixty-four bit,
bidirectional communication port or a pair of thirty-two bit unidirectional ports to
each adjacent slot. These signals are unused in the Gauss machine implementation,

but will be used in a future TMS320C40 hypercube implementation.

3.6.3 Array Broadcast Bus

The array broadcast bus consists of the remaining 109 signal lines not used in the near-
neighbor connections or the CPU-array interface. Like the near-neighbor connections,
the broadcast connections are not defined @ priori. These connections are intended
to handle control and data distribution. The assignment of these signals for the Gauss

machine is discussed in Section 6.2.

-
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3.7 Support Circuitry

This section describes the miscellaneous modules that provide the critical support

functions which are not a proper part of any of the major modules of the architecture.

3.7.1 Clock Generator Module

The clock generator module consists of three components: the crystal time base,
the clock generator, and a low-skew buffer. The crystal timebase is a 40 MHz TTL
compatible clock. This clock drives an AMD Am2971A PEG (Programmable Event
Generator) which produces phase locked versions of 2 MHz, 5 MHz, 10 MHz, and
20 MHz clocks. Fin;dly, since the PEG has a relatively low power output drive, the
clock signals are buffered by an AMD Am29C827A high-speed CMOS bus driver. The
Am29C827A features low tpp, low skew, and “edge-rate control” which is intended
to minimize ground bounce.

The clock module produces one copy each of the 2 MHz and 5 MHz clocks, two
copies of the 10 MHz clock, and six copies of the 20 MHz clock. The various copies of
the 20 MHz clock are reserved for distribution to different modules, with the intent of
minimizing clock skew within each module. The clock distribution reservation table

is shown in Table 3.8.

3.7.2 Reset Circuit Module

The reset circuit module contains power-up and on demand system reset circuitry.
Power-up reset is provided by a Texas Instruments TL7705A Power Supply Supervi-
sor/Reset Generator. The pd-ver-up reset circuil monitors system power and asserts
the RESET signal for an amount of time controlled by CL. Cl has been chosen to

be greater than 40.F, thus, RESET will be asserted for at least 500 ms after the 5V
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supply rail reaches within ten per cent of 5V.
The reset signal provided by the TL7705A is buffered into the wired-OR sys-
tem RESET* signal by an open-collector inverter. The reset circuit contains a reset

switch connected to the system RESET* signal.



| Pin Number ! Signal Name ] Description

1 SLOTENx* | Slot enable. Wired-OR.
2 STERMx* Synchronous bus cycle termination.
3 ARYDS* Data strobe.
4 ARYAS* Address strobe.
5 ARYR/W Read/write strobe.
6 ARYUU* Upper byte select.
7 ARYUM* Upper-middle byte select.
8 . | ARYLM* Lower-middle byte select.
9 ARYLL* Lower byte select.
10 ARYARYSP* | Array address space select.
11 ARYRMC* | Read-modify-write signal.
12 RESET* System reset.
13 HALT* System halt.

14—45 D31-0 Data bus.

46—75 A29-0 Address bus.
79 CLK20C 20 MHz system clock.
81 CLK10B 10 MHz system clock.
83 CLK5 5 MHz system clock.
85 CLK2 2.5 MHz system clock.

77,82,84,87 | Vec 5 V power bus.
76,78,80,86 | GND Ground rail.
- 88—7 — Near neighbor connections.
Odd pin numbers to left slot.
Even pin numbers to right slot.
7—324 — Broadcast hus.

Table 3.7: Array Bus Signals

41



I Signal | Frequency | Reservation/Availability ]

CLK2 2 MHz Unallocated

CLK5 5 MHz | Unallocated
CLK10a | 10 MHz | I/O module
CLK10b | 10 MHz | Array module
CLK20a | 20 MHz | CPU module
CLK20b | 20 MHz | I/O module
CLK20c | 20 MHz | Array module
CLK20d | 20 MHz | RAM module
CLK20e { 20 MHz | ROM module
CLK20f | 20 MHz | Unallocated

Table 3.8: Clock Reservation



Chapter 4

SOFTWARE

The InvestiGATOR’s firmware is written primarily in C. Besides being readily
available for the 63030 architecture, the C language offers high level language ben-
efits of compactness and ease of use combined with some of the benefits associated
with assembly language, mainly control and speed. The InvestiGATOR firmware is
modular in nature, domposed of a kernel, SCSI bus interface (SBIC) firmware, serial
I/O (SIO) firmware, and interface code to the target processor, the Gauss machine.

A block diagram of the software architecture is shown in Figure 4.1.

Kernel
A A 3
A y A
SBIC Firmware SIO Firmware Target Array
4 4 Interface Firmware
A
Y A b
SBIC (Am33C93A) SIO (Z85C30) Target Array

Figure 4.1: InvestiGATOR Software Architecture Block Diagram

4.1 Kernel

The primary mission of the kerncl is to manage resources and control dispatch of
tasks to the various subsystems. The key resource which is managed by the ker-

nel is memory. The kernel also manages the dispatch of interrupts to the various
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subsystems.

4.2 SBIC Firmware

The SBIC firmware is responsible for managing the substantial SCSI protocol. The

following sections introduce the operation of the SCSI bus and the structure of the

SBIC firmware.

4.2.1 SCSI Bus Operation

The SCSI bus has four phases of operation. The SCSI bus idles in the bus free
phase. When a device wants to gain control of the bus, the bus enters the arbitra-
tion phase. During the arbitration phase all devices attempting to gain control over
the bus arbitrate for the bus. The device with the highest SCSI ID wins the arbi-
tration. After successful arbitration the bus enters the selection phase. During the
selection phase the SCSI bus master attempts to select the device with which it wants
to communicate. After successful selection the bus enters the information transfer
phase. The information transfer phase is characterized by the transfer of commands,
data packets, and messages. A flow diagram of the SCSI phases is shown below in
Figure 4.2.

There are two types of devices on the SCSI bus: initiators and targets. Initia-
tors are typically host processors while targets are typically peripheral devices such as
disk drives. The InvestiGATOR operates as a target. The InvestiGATOR responds
to the commands test unit ready, request sense, send and receive. These operation
of the these commands are shown in Figures 4.3-4.6.

The test unit ready command is used to query the target device as to its

status. This command is mandated by the SCSI standard. The InvestiGATOR will
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Figure 4.2: SCST Bus Phases

respond with a gooc‘l, check condition, or busy status code. The good status code
indicates that the InvestiGATOR is ready and standing by for a command. The
check condition status code indicates that the InvestiGATOR is not ready and has
additional status information available. Finally, the busy status code indicates that
the InvestiGATOR is busy. The transactions required to execute a test unit ready

command are shown in Figure 4.3.

Initiator {Host) Target (InvestiGATOR)

Acquire Target & Transmit Command

1) Win arbitration
2; Select tar_?et
3) Transmit TEST UNIT READY Respond to Command

1) Transmit {GOOD | CHECK CONDITION |
BUSY]} status
2) Transmit COMMAND COMPLETE

Finish Transaction * message

1) Release bus

Figure 4.3: Test Unit Ready Command Operation

The request sense command is used to query the device for extended status

data. Typically, the request sense command is executed after a check condition status
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is returned on a command. The transaction model for the request sense command is

shown in Figure 4.4.

Initiator (Host) Target {InvestiGATOR)

Acquire Target & Transmit Command

1} Win arbitration
2) Select target

3) Transmit REQUEST SENSE » Respond to Command

1) Enter DATA IN phase

2) Transmit sense data

3) Transmit GOOD status

4) Transmit COMMAND COMFLETE

message

F

Finish Transaction

1) Release bus

-

Figure 4.4: Request Sense Command Operation

The send and receive commands are the primary data communication com-

mands between a host processor and the InvestiGATOR. The transaction models for

the send and receive commands are shown in Figure 4.5 and Figure 4.6.

Initiator (Host) Target (InvestiGATOR)

Acquire Target & Transmit Command

1} Win arbitration
2) Select target

3) Transmit SEND Respond to Command

Y

1) Enter DATA OUT phase

2) Transmit data
3) Transmit {GOOD | CHECK CONDITION |

BUSY] status
4 4) Transmit COMMAND COMFPLETE

Finish Transaction

1) Releass bus

Figure 4.5: Send Command Operation
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Initiator {Host} Targst {InvestiGATOR)

Acquire Target & Transmit Command

1} Win arbitration
2; Select target
3j Transmit RECEIVE Respond to Command

1) Enter DATA IN phase

2} Receive data

3) Transmit {GOOD | CHECK CONDITION |
BUSY]) status

Finish Transaction 4) Transmit COMMAND COMPLETE

1) Release bus

Figure 4.6: Receive Command Operation

4,2.2 SBIC Firmware

The SBIC operates under an interrupt driven protocol. This subsection discusses
the flow diagram of the SBIC reset routine and the interrupt service routine (ISR)

depicted in the flow diagram of Figure 4.7.

Before the SBIC can be used, it must be initialized via a software interrupt.
The SBIC is preloaded with the SCSI address of the InvestiGATOR before a software
reset is executed. After the reset completes, interrupts a;nd data I/O modes are
programmed. Initially, the InvestiGATOR is set to SCSI address 4 and uses interrupt
drive 10,

The InvestiGATOR operates only as a target in the initial configuration. The
InvestiGATOR does not support disconnect/reselection at this time so the firmware
is fairly simple. The SBIC interrupts the processor with a service required interrupt
when an initiator on the SCSI bus selects the InvestiGATOR. Selection may occur
either with the attention (ATN) signal asserted or negated: ATN asserted indicates
that there is a message pending. Sclection with attention is used exclusively to

request that the target accept an IDENTIFY message. The InvestiGATOR does not
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currently support the IDENTIFY message, and thus selection with attention leads
to a fault condition.

After the SBIC ISR identifies a selection without attention condition, the
ISR prepares the SBIC to recejve a comrand from the initiator. Currently the
InvestiGATOR only supports a SCSI command set which is (coincidently) limitted
to those commands which have six byte command frames. Thus, a transfer count of
six is loaded into the transfer count register and a RECEIVE COMMAND command
is issued to the SBIC. The SBIC then receives a command from the initiator,

If a data phase is required by the command received from the initiator then
the SBIC is prepared for a data phase by setting the synch;‘onous transfer control
register and the transfer counter register and issuing a send or receive data command.

If the command received was a linked command then a SEND STATUS com-
mand is issued to the SBIC and the execution returns to the RECEIVE COMMAND
phase. If the command was not a linked command then a SEND STATUS AND
COMMAND COMPLETE command js issued to the SBIC, causing the last com-

mand’s status to be transmitted to the initiator and the SBIC to disconnect.

4.3 SIO Firmware

The serial port is operated in an interrupt driven I/O mode. The SIO drivers sup-
port circular transmit/receive buffers which ajd in increasing system throughput and
allowing type-ahead. The XON/XOTT flow control protocol is the only flow control
protocol currently supported. In the current implementation serial port A is the

console (stdin/stdout) while serial port B is unassigned.
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Chapter 5

INTRODUCTION

The Gauss machine is a 2 X 2 systolic array processor comprised of three
seven-bit GEQRNS channels for a total of six seven-bit RNS channels. The array
of processors is arranged in a mesh-connected topology with unidirectional dataflow.
Alternately, the Gauss machine may be configured to utilize two of its processors as
a vector processor. The Gauss machine excels in computation of level 3, level 2, and

level 1 operations.

5.1 Motivation

The design of the Gauss machine is motivated by several factors. There exists a
need for high-performance front-end signal processors which are reliable, small, con-
sume minimal power, and are relatively inexpensive. Typically, high performance is
achieved using a combination of fast processors coupled with some parallelism. Sig-
nal processing applications have been demonstrated to be particularly amenable to
systolic array implementations[7]. Traditional technologies have typically featured
large, multiple package designs where individual processors were made up of several
large VLSI devices[8]. Even new, state-of-the-art processors designed for parallel
processing, but based on conventional arithmetic technology such as the iWarp[9] or
TMS320C40[10] have at least one large package per processor element. These designs
typically had large physical form factors, high power consumption (multiple watts

per processor), and low reliability. Attempls to improve reliability by incorporat-



ing redundancy typically result in little improvement at the expense of greater than
one-hundred per cent in terms of hardware, power, size, and cost.

Processor architectures based upon residue arithmetic are uniquely qualified
to meet the demanding needs of modern signal processing systems. The RNS is a high
performance system of arithmetic having performance which is independent of word-
width. The RNS features relatively small die area when compared with conventional
arithmetic. The RNS is inherently fault and defect tolerant[3, 4], and may realize the

full potential of VLSI systolic arrays(7].

3.2 Design Parameters

Currently, there are no RNS systems which are general purpose in nature. Most RNS
systems are hard-wired to a specific task. There exists a need to demonstrate an RNS
system which is more general purpose in nature. This RNS system must be capable
of many different operations. Additionally, there is motivation to demonstrate the
use of the RNS in systolig array architectures.

The Gauss machine is designed as a discrete prototype of a 2 x 2 x 6 VLSI
systolic array of GEQRNS multiplier-accumulators. The array is hosted by the In-
vestiGATOR array processor testbed. Data conversion functions are provided by the
InvestiGATOR. The array controller is a microprogrammed controller based upon a

single chip microsequencer.



Chapter 6

IMPLEMENTATION

6.1 Architecture

The Gauss machine ;upports a three channel GEQRNS or QRNS, 2 x 2 array of seven
bit multiplier-accumulators. The array is formed by six boards, with each board
comprising a 2 x 2 array seven bit multiplier-accumulators. The array is integrated
into the InvestiGATOR array processor backplane with the addition of a controller,

and optionally, a forward-conversion and CRT engine board.

The Gauss machine supports a mesh connected geometry with north and east
flow of data. The array uses FIFOs to provide the means for data to be sequenced
through the array. The FIFOs are the gateway through which the array communicates
with the outside world. Additionally, the Gauss machine offers a vector mode of
operation which utilizes PEs (1,1) and (1,2) to perform level 1 and level 2 operations
at higher performance levels than would be possible using the full array. A block

diagram is given below in Figure 6.1.

The FIFOs located on the periphery of the array meet the goal of allowing
concurrency in processing and data [/0 since the memories may be loaded or emptied

as calculations proceed.
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Figure 6.1: Block Diagram of Gauss Machine Array
6.2 Processor Implementation

Each processor element in the array (see Figure 6.1) consists of a multiplier, accumu-
lator, and support architecture. The inputs to the multiplier come from the X-bus
and Y-bus. The X-bus is also connected to the F-bus, allowing the accumulator to be

pre-loaded, or the output of the adder may be output to the X-bus. A block diagram

of the processor element is depicted below in Figure 6.2.

A
DY
@ D Y
E D Y
F Bus
—D Y X Bus >
>..
)

i

Figure 6.2: Block Diagram of Gauss Machine Processor Element

The arithmetic units in this discrete implementation are direct lookup tables
implemented in static RAM. In a VLSI implementation these atithmetic units would

be implemented with adders and small ROM lookup tables. Additional architectural
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enhancements are made to PEs (1,1), and (1,2) to allow these two processors to
operate as a very high throughput vector processor. The array architecture in vector

mode is shown in Figure 6.3. The augmented processor is depicted in Figure 6.4.

FIFO ﬂl —=>{FIFO
FIFO - FIFO

A
C‘§ X —»D Y
> fz) »D Y
. J-‘D Y
D 1 F Bus
oY X Bus >
> "D Y—»

X Escape Bus

Figure 6.4: Augmented Processor Element

The X-bypass-bus of the enhanced PE is connected to the X-FIFQOs, allowing
two operands per cycle to be deposited on each of the enhanced processors. The X-
escape bus of PE (1,1) allows the results to be Aushed out of the processors in one clock
cycle. The vector enhancement allows thie Gauss machine to perform level 1 and level
2 operations very efficiently, and while the enhancement does not allow an addition

of two operands to be performed directly, it may be performed in two cycles using
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the accumulator. The vector processor can also perform pointwise multiplication of

two vectors using a single clock cycle per operand pair.

6.2.1 Processor Control Signals

This section lists the processor control signals and their function. The control signals
are registered on the processor boards. The signals are listed in Table 6.1.

The signals in Table 6.1 may be broken into several groups. These groups are:

e Address information: BA2-0, and PA2-0.

o FIFO Control: XIW* YIW* XOW*, XIR* YIR*, XOR*, XIFLRT*, YI-
FLRT*, and XOFLRT™.

o Adder RAM Control: ROE*, ARWE*.

¢ Multiplier RAM Control: MROE*, MRWE*.

e X-Bus Control: XBOE*, XBEN*, XFEN*, AREN*, and AROE*.

¢ Y-Bus Control: YBEN*,

e Processor Structure Control: PREN*, and SREN*.

e Processor Configuration Control: VECTORMODE and ARITHMODE.

e Miscellaneous: CLR*, RESBWE*, and RESBRE*.

6.3 Controller Implementation

The Gauss machine uses a microprogrammable controller. The heart of the controller
is a single chip microsequencer with EPROM based microprogram store, the AMD

Am20CPL154. The microcode store has a total of 512 words of microinstruction
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storage. The microsequencer uses PLDs to decode its instructions for the array. The
architecture of the controller is depicted in Figure 6.5. The Gauss machine controller

has a pipeline delay model depicted in Figure 6.6.

Status |«
Register
Memory Mapped ¢ Command Am2 Command | —Array
Mapped < ! »| AM29CPL154 [~
e arfac Register icrosequencer Decoder

Figure 6.5: Block Diagram of Gauss Machine Controller Architecture
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Figure 6.6: Gauss Machine Pipeline Delay Model

In order to perform an operation on the array, the InvestiGATOR will load
some data into the array input FIFOs, and order the controller to perform the ex-
pected operation by writing a command to the command register. The InvestiGATOR
then monitors the status register in order to determine when the computation is com-

plete. Then the InvestiGATOR retrieves the results from the array output FIFOs.
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This same method is used for programiming the array multipliers and adders, except
that there is no need to read back any results.

The chosen microsequencer, the Am29CPL154 has a relatively narrow output
word (eight bits), yet the array has a substantial number of control lines as evidenced
by Table 6.1. Fortunately, this does not present a problem because there are only a
limited number of useful combinations of control signals. Therefore, the output word
of the microsequencer is used as a command code or instruction and is decoded into

the appropriate set of signals by the command decoder, see Figure 6.5.

6.4 Array Initialization

In order to perform useful operations on the array, the arithmetic elements must be
initialized. There exist enhancements which are not visible in the block diagram of
Figure 6.2 to allow programming of the multiplier. The adder can be programmed
without any architectural enhancements.

The multiplier and architecture related to its programming is depicted in Fig-
ure 6.7. Control signals are indicated in the block diagram. The multiplier memory
is addressed by the X-bus and Y-bus, and by the ARITHMODE signal. The multi-
plier data is loaded from the X-bus to the multiplier memory. Register output enable
signals are indicated by an OE suffix while latch enable signals are indicated by an
EN suffix. The write strobe for the memory is indicated by the MRWE* signal. The
MRWE* signal is broadcast to all processors in the system so all of the multipliers
must be programmed at the same time.

Programming of the multiplier proceeds as follows. The X- and Y- FIFOs are
loaded by the InvestiGATOR. The InvestiGATOR sends a command to the Gauss

machine controller to program a block ol the multiplier memory. X- input FIFO
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Figure 6.7: Processor Multiplier Programming Model

-

transmits the contents of the memory location across the X- bus to a register which
outputs to the multiplier memory’s data bus. Next, the address of the data word
to be programmed is propagated across the array from the X- and Y- input FIFOs
and the multiplier memory’s write line is strobed. The process is repeated until the

multiplier is programmed.

The adder and architecture related to its programming is depicted in Fig-
ure 6.8. The adder is programmed as follows. The adder data and addresses are
loaded into the X- input FIFO. The least significant portion of the address is trans-
mitted via the X-bus to the product output registers, controlled by PROE* and
PREN*, with MROE* negated. Next, the most significant word of address is trans-
mitted and loaded into the accumulator register, controlled by SROE* and SREN*.
Finally, The actual data word is transmitted via the X-bus to the F-bus by way of
the buffer controlled by XPQOE*, and to the adder memory’s data port. The adder
memory write signal, ARWE*, is strobed, loading the data into the adder memory.

This process is repeated until the adder is programmed.
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Figure 6.8: Processor Adder Programming Model
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6.5 Conversion Engine Architecture

The forward conversion engine performs the task of generating the residues of the
value input to the engine. This forward conversion is a relatively straightforward
process once it is seen that the process may be accomplished simply by breaking the
input values into a set of partial sums where each sum represents a range of bits of
that number; in other words, suppose we wish to compute the residue modulo p of

an L bit number N. We would note that the following congruence holds:

L-1

<N>,= (Z a;Q’) (mod p),

i=0

where a; € {0,1} and are digits of the binary representation of N. Now, suppose

0<J< K <L~—1. Then

J-1 K=1 L-1
<N >,= Z a;2t + Z ;2 -+ Z ;2 (mod p).
'

i=0 =N
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A (mod p) operation may be added after each partial sum without changing the

result:
K-1 .
< N >,= (Z a 2) modp) + (Z a,-2’) (modp) + (Z a 2’) modp) } {modp).
i=J i=K

This suggests that each partial sum, modulo p, can be computed using a small table,
and the partial sums added together to form a sum which must be corrected modulo p.
This is illustrated in Figure 12 In Figure 6.9a, conversion of a twenty-four bit input
using two tables of order 2'? to produce an eight bit output is demonstrated. In

Figure 6.9b, the same conversion is accomplished using three tables of order 2°,

-

i2”|Partial Mod p| 3 e
N—% 57 Mod p | 8 g
12" |Partial Mod p| 8
(a)
8 ”|Partial Mod p| @
N =25 lpartial Mod p 9
e <N>,
N Mod p 8
8 "|Partial Mod p| 8

(0)

Figure 6.9: Forward Conversion Architecture

The forward conversion engine was not implemented in hardware since it would
be relatively expensive to produce a discrete implementation. Instead, the forward
conversion engine was implemented with a softwarc architecture inspired by the above

discussion. This was motivaled by the low speed of a direct implementation of the
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forward conversion using the standard sequence of divide, multiply, and subtract
operations. In particular, the multiplication and division operations are particularly
time consuming on the MC68030 (and most microprocessors). The source code in
Section D.5 of Appendix D implements a high speed forward conversion based upon
table lookup using small tables and minimal arithmetic (addition and subtraction
only).

Similarly, the CRT engine hardware was too expensive to implement; emula-
tion of the CRT was substituted. As for the forward conversion, the QRNS to CRNS
to Gaussian integer conversion was implemented using a fast, table lookup based
algorithm based upen the discussion in Section 1.3. The source code for this high

performance implementation is included in Section D.5 of Appendix D.

6.6 Application Programmer’s Interface

6.6.1 QOverview

The system software for the Gauss Machine is divided into two parts: firmware for the
backplane and the Application Programmer’s Interface (API). This chapter describes
the API which contains routines for linear algebra and communication between the
host and the Gauss Machine. The AP is written in THINK C 5.0 for the Macintosh.

The Application Programmer’s Interface (API) contains roughly X subroutines
that facilitates programming of the Gauss Machine. The idea behind the API is to
provide fast prototyping environment for developing and testing new algorithms for
the Gauss Machine. Therelore, the routines are not necessarily optimized for speed.

The API can be divided into “high-level” and “low-level” calls. The high-level
routines often mimic Matlab statements, e.g., matrix-matrix, matrix-vector, vector-

vector multiplication is handled by one routine called mult (). The low-level calls
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implements the primitive operations from which the high-level routines are composed
of, such as, memory management and communication between the host and the Gauss
Machine. Furthermore, the algebra routines comes in two versions, one using floating-
point arithmetic and the other using integer arithmetic.

Typically, the development of an algorithm for the Gauss Machine consists of

the following steps:

o Program and test algorithm in Matlab.

¢ Port Matlab code into API calls.

-

o Test API code with the Gauss Machine.

o If optimization is of interest, rewrite code using the low-level API.

A complete listing of the API calls are found in Appendix X.

6.6.2 High-Level API Routines

Prototyping and testing signal processing/linear algebra algorithms are easily done
in interactive packages like Matlab, Mathematica, Maple and Monarch/Siglab. The
design of the high-level AP was done with this in mind. The API routines imitates
Matlab function calls which makes it easy to port an m-file or a Matlab script to
a C program running on the Gauss Machine. The Matlab statements are simply
exchanged to the corresponding API calls and, with some glue code, the port is
complete.

The soltware was written in THINK C version 5.0 with the following libraries:
ANSI, MacTraps. The code was compiled and run on a Mac 1lx, 4Mb RAM, 4Mb

virtual memory, System 7.0.



These are the THINK C settings under Edit, Options..

¢ Language Settings

— ANSI Conformance
— Check pointer types.

— Language Extensions

THINK C

Strict Prototype Enforcements

Infer Prototypes
e Compiler Settings

— Generate 68020 instructions

- Generate 68881 instructions

— Classes are indirect by default

— Methods are virtual by default
— Optimize monomorphic methods

— \bslash p is unsigned char]]
e Code Optimization

— Defer & combine stack adjust
— Suppress redundant loads

— Automatic Register Assignment Debugging

64
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— Use source debugger
— Use second screen

— Always save session

These are the THINK C settings under Project, Set Project Type...

Application

File type APPL

Partion (K) 384

-

Size Flags 0000

The software consists of 5 “library” files (with corresponding header files) and

one global header file:

types.h: Global type definitions.

list.c: Memory management routines. This software was originally written by
R. F. Starr, 2639 Valley Field Dr., SugarLand, TX 77479 and was published in

Dr. Dobbs Journal. list.c have been slightly modified.

utils.c: Utilities.

conv.c: Floating-point to fixed-point conversion routines.

matrix.c: Floating-point matrix algebra routines, memory management.

int_matrix.c: Integer matrix algebra routines, memory management.
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The routines in int_matrix.c are identical to the routines in matrix.c except
for those operations that are not defined for integers, i.e., division.

In order to compile these files as parts of a code resource, change all calls of
malloc() to NewPtr() and free() to DisposPrt(). Furthermore, comment out the
stdio routines, i.e., printf() and friends, in utils.c. It may be also necessary to
change the ANSI library to the required library for code resources.

Note: Whenever the comments in the code and this document disagree, rely

on this document.

6.6.3 Macros and Qonstants
file: int.matrix.c
#define COMP 0x4 /* marks compatible dimensions */
#define SCAL 0x8 /* marks one operand as a scalar */
#define INT(a) ((int)(a)) /* casts a to integer */
#define EQDIM(a, b) ( (a->rows == b->rows) && (a->cols ==
b->cols) ) /* checks if a and b has the same dimensions */
file: matrix.c
#define OOPS printf(oops: %d\n, _LINE_); /* debugging macro */
#define COMP 0x4 /* marks compatible dimesions */

#define SCAL 0x8 /* marks one operand as a scalar #*/

#define INT(a) ((int)(a)) /* casts a to integer */

file: conv.h
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file:

file:

file:
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#define max(a, b) (a >b) ? a : b /* maximum of a and b */
#define min(a, b) (a < b) ? a : b /* minimum of a and b */

int_matrix.h]

#define deref(type,x) *((type*)(x)) /* not really useful */

matrix.h

#define SIZE(a) ((a)->rows * (a)->cols) /* computes number of

. elements in matrix =/

#define EQDIM(a, b) ( (a->rows == b->rows) && (a->cols ==

b->cols) ) /* checks if a and b has the same dimensions */

#define cmul(a, b, c, d, e, £); a = (c) * (e) - (4) * (f); b =

(c) = (£) + (d) * (e); /* complex multiply */

#define cabs(a, b) sqrt(({a) * (a) + (b) * (b))) /* compute
complex absolut value */

types.h

#define INTTYPE long /* integer data type */

#define FLOATTYPE double /* floating-point data type */
#define NOERR 0 /* OK return code */

#define CMPLX Ox1 /* marks a complex value */

#define REAL 0x2 /* marks a real value */

utils_h
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description:

arguments:

returns:

usage:

file:

description:

arguments:

returns:

usage:
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#define PLAIN 0x0 /# Plain format */

#define MATLAB 0x1 /* Print in MATLAB style (with [ ] and ;) */

Function Descriptions.

matrix *add(matrix *a, matrix *b)

Adds matrices a and b.
matrix *a, *b Input matrices.
matrix * The sum of a and b, NULL if error.

sum = add(a, b); /* sum = a + b
matlab equivalent:

>> sum = a + b; %/
matrix.c

matrix *appendcols(matrix *a, matrix *b)

Returns a matrix with b’s columns appended to a ([a, b]). Naturally, a and b

must have the same number of rows.
matrix *a, *b Input matrices.
matrix * (2, b], NULL if error.

¢ = appendcols(a, b); /* ¢ = [a, b]

matlab equivalent:
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> ¢ = [a, b]; */
file: matrix.c

matrix *appendrows(matrix *a, matrix *b)

description: Returns a matrix with b’s rows appended to a ([a; b]). Naturally, a and b

must have the same number of columns.
arguments: matrix *a, *b Input matrices.
returns: matrix * [a; b}, NULL if error.

usage: ¢ = appendrows(a, b); /* ¢ = [a; bl
matlab equivalent:

> ¢ = [a; b]; */
file: matrix.c

matrix *assign(matrix *target, matrix *rows, matrix *cols, matrix* *source)

description: Puts the matrix source into a sub matrix of target indicated by rows and cols.
That is, rows and cols defines a sub matrix of target {exactly like
sub_matrix()) and this sub matrix is overwritten with data from the source
matrix. This is analogous to the matlab statement target(rows, cols) =
source. Needless to say, the sub matrix of target and source must be of the

same dimensions. For example, suppose

target = [1234;56 7891011 12],



arguments:

returns:

usage:

see also:

note:

file:

source = {13 14; 15 16},
rows = [3 2] and cols = [1 2], the resulting matrix would be

(1234;151678;13 14 11 12].

If rows or cols is NULL, this means all the rows and all the columns of target.
That is, target(rows,:) = source would be coded as assign(target, rows, NULL,
source), and similarly, target(rows,:) = source would be coded as

assign(target, rows, NULL, source).

matrix *target Matrix to be written to.

matrix *rows Row indexing matrix.

matrix *cols Column indexing matrix

matrix *source Matrix whose data will be written to target.

matrix * Copy of target with parts overwritten by source, NULL if error.

assign(target, rows, cols, source); // target(rows, ceols) =

source
assign(target, rows, NULL, source); // target(rows, :) = source

assign(target, NULL, cols, source); // target(:, cols) = source
submatrix() temp_copy()

Does not